首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   296472篇
  免费   30790篇
  国内免费   18095篇
电工技术   73197篇
技术理论   13篇
综合类   27025篇
化学工业   20135篇
金属工艺   10111篇
机械仪表   22969篇
建筑科学   20040篇
矿业工程   10086篇
能源动力   16458篇
轻工业   6469篇
水利工程   12541篇
石油天然气   10008篇
武器工业   3728篇
无线电   25420篇
一般工业技术   14447篇
冶金工业   11524篇
原子能技术   4359篇
自动化技术   56827篇
  2024年   519篇
  2023年   3451篇
  2022年   6136篇
  2021年   7533篇
  2020年   8718篇
  2019年   7080篇
  2018年   6319篇
  2017年   9089篇
  2016年   10117篇
  2015年   11193篇
  2014年   19932篇
  2013年   17745篇
  2012年   22195篇
  2011年   24246篇
  2010年   17899篇
  2009年   18458篇
  2008年   18133篇
  2007年   21936篇
  2006年   19784篇
  2005年   16968篇
  2004年   14021篇
  2003年   12125篇
  2002年   9608篇
  2001年   8042篇
  2000年   6748篇
  1999年   5295篇
  1998年   3992篇
  1997年   3359篇
  1996年   2923篇
  1995年   2492篇
  1994年   2119篇
  1993年   1499篇
  1992年   1241篇
  1991年   864篇
  1990年   718篇
  1989年   608篇
  1988年   427篇
  1987年   285篇
  1986年   201篇
  1985年   169篇
  1984年   244篇
  1983年   184篇
  1982年   171篇
  1981年   104篇
  1980年   72篇
  1979年   89篇
  1978年   60篇
  1977年   54篇
  1959年   42篇
  1951年   32篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
It is clear that the entire world have to research, develop, demonstrate and plan for alternative energy systems for shorter term and also longer term. As a clean energy carrier, hydrogen has become increasingly important. It owes its prestige to the increase within the energy costs as a result of the equivocalness in the future availability. Two phase flow and hydrogen gas flow dynamics effect on performance of water electrolysis. Hydrogen bubbles are recognized to influence energy and mass transfer in gas-evolving electrodes. The movement of hydrogen bubbles on the electrodes in alkaline electrolysis is known to affect the reaction efficiency. Within the scope of this research, a physical modeling for the alkaline electrolysis is determined and the studies about the two-phase flow model are carried out for this model. Internal and external forces acting on the resulting bubbles are also determined. In this research, the analytical solution of two-phase flow analysis of hydrogen in the electrolysis is analyzed.  相似文献   
42.
Direct steam generating parabolic trough power plant is an important technology to match future electric energy demand. One of the problems related to its emergence is energy storage. Solar-to-hydrogen is a promising technology for solar energy storage. Electrolysis is among the most processes of hydrogen production recently investigated. High temperature steam electrolysis is a clean process to efficiently produce hydrogen. In this paper, steam electrolysis process using solar energy is used to produce hydrogen. A heat recovery steam generator generates high temperature steam thanks to the molten carbonate fuel cell's waste heat. The analytical study investigates the energy efficiency of solar power plant, molten carbonate fuel cell and electrolyser. The impact of waste heat utilization on electricity and hydrogen generation is analysed. The results of calculations done with MATLAB software show that fuel cell produces 7.73 MWth of thermal energy at design conditions. 73.37 tonnes of hydrogen and 14.26 GWh of electricity are yearly produced. The annual energy efficiency of electrolyser is 70% while the annual mean electric efficiency of solar power plant is 18.30%.The proposed configuration based on the yearly electricity production and hydrogen generation has presented a good performance.  相似文献   
43.
This study represents the results of the analysis and optimization of an integrated system for cogenerating electricity and freshwater. This setup consists of a Solid Oxide Fuel cell (SOFC) for producing electricity. Unburned fuel of the SOFC is burned in the afterburner to increase the temperature of the SOFC's outlet gasses and operate a Gas turbine (GT) to produce additional power and operate the air compressor. At the bottom of this cycle, a combined setup of a Multi-Effect Desalination (MED) and Reverse Osmosis (RO) is considered to produce freshwater from the unused heat capacity of the GT's exhaust gasses. Also, a Stirling engine is used in the fuel supply line to increase the fuel's temperature. Using LNG and the Stirling engine will replace the fuel compressor with a pump which increases the system performance and eliminates the need for the expansion valve. To study the system performance a mathematical model is developed in Engineering Equation Solver (EES) program. Then, the system's simulated data from the EES has been sent to MATLAB to promote the best operating condition based on the optimization criteria. An energetic, exergetic, economic, and environmental analysis has been performed and a Non-dominated Sorting Genetic Algorithm (NSGA-II) is used to achieve the goal. The two-objective optimization is performed to maximize the exergetic efficiency of the proposed system while minimizing the system's total cost of production. This cost is a weighted distribution of the Levelized Cost of Electricity (LCOE) and Levelized Cost of freshwater (LCOW). The results showed that the exergetic and energetic efficiencies of the system can reach 73.5% and 69.06% at the optimum point. The total electricity production of the system is 99 MW. The production cost is 11.71 Cents/kWh, of which 1.04 Cents/kWh is emission-related and environmental taxes. The freshwater production rate is 42.44 kg/s which costs 4.38 USD/m3.  相似文献   
44.
This paper focuses on thermal destratification and pressurisation inside thermally stratified storage tanks by continuous gas bubbling. The primary purpose of doing these studies is to better understand the effect of bubble dynamics on thermal destratification and quantify the extent of destratification. The volume of fluid and interface compression method of OpenFOAM CFD code is utilised for the present analysis. Different values of inlet gas velocities (Vg), orifice diameters (do), and arrangement of the orifices in triangular and square fashion with different pitches (p/do) are considered. In addition, the effect of gravitational forces (g/ge) on thermal destratification is also reported. For all these cases, the effectiveness of thermal destratification is quantified in terms of a newly defined parameter, the destratification index (Id). For Vg = 1 m/s, the Id value is maximum compared to lower Vg values. It is seen that when the gas velocity increased from 0.3 m/s to 1.0 m/s, the average effectiveness in thermal destratification (Idavg) and pressure at the ullage increased by 44.38% and by 64.81%, respectively. The Idavg and pressure at ullage increased by 96.29% and 14.91%, respectively, when the g/ge ratio changed from 0.3 to 3. Compared to the triangular arrangement with p/do = 10, the calculated Idavg increased by 30.67% when gas inlets were arranged with a square pitch of 10. For p/do = 4, 6 and 8, the increments in Idavg are of the order of 12.86%, 19.43% and 21.92%, respectively, for gas inlets arranged in a square fashion as compared to the triangular arrangement. It is found that continuous bubbling with gas inlets arranged in square pitch p/do = 10 gives higher effectiveness in thermal destratification. Thus, by these studies, one can develop a thermal destratification mechanism with continuous bubbling for optimum performance. Also, these studies give an overall idea of sparger design for getting the correct gas flow rate for thermal destratification within the cryogenic liquid storage tanks.  相似文献   
45.
Sealing performance between two contacting surfaces is of significant importance to stable operation of proton exchange membrane (PEM) fuel cells. In this work, an analytical micro-scale approach is first established to predict the gas leakage in fuel cells. Gas pressure and uneven pressure distribution at the interface are also included in the model. At first, the micro tortuous leakage path at the interface is constructed by introducing contact modelling and fractal porous structure theory. In order to obtain the leakage at the entire surface, contact pressure distribution is predicted based on bonded elastic layer model. The gas leakage through the discontinuous interface can be obtained with consideration of convection and diffusion. Then, experiments are conducted to validate the numerical model, and good agreement is obtained between them. Finally, influences of surface topology, gasket compression and gasket width on leakage are studied based on the model. The results show that gas leakage would be greatly amplified when the asperity standard deviation of surface roughness exceeds 1.0 μm. Gaskets with larger width and smaller thickness are beneficial to sealing performance. The model is helpful to understand the gas leakage behavior at the interface and guide the gasket design of fuel cells.  相似文献   
46.
The fuel cell/battery durability and hybrid system stability are major considerations for the power management of fuel cell hybrid electric bus (FCHEB) operating on complicated driving conditions. In this paper, a real time nonlinear adaptive control (NAC) with stability analyze is formulated for power management of FCHEB. Firstly, the mathematical model of hybrid power system is analyzed, which is established for control-oriented design. Furthermore, the NAC-based strategy with quadratic Lyapunov function is set up to guarantee the stability of closed-loop power system, and the power split between fuel cell and battery is controlled with the durability consideration. Finally, two real-time power management strategies, state machine control (SMC) and fuzzy logic control (FLC), are implemented to evaluate the performance of NAC-based strategy, and the simulation results suggest that the guaranteed stability of NAC-based strategy can efficiently prolong fuel cell/battery lifespan and provide better fuel consumption economy for FCHEB.  相似文献   
47.
本文简介多功能液压支架拖运车的电控系统,包括电控箱的设计和主要电气元件的性能和选择依据。此电控系统能够一般电控系统的各种功能和保护,而且能够通过摄像头做到操作盲区和使用遥控器进行远程控制,从而提高液压支架的拖运效率、降低劳动强度和提高安全保障。  相似文献   
48.
In the present numerical study, the combined effect of temperature-dependent thermal conductivity, linear thermal radiation, and magnetic effect on shear-thinning tangent hyperbolic fluid past a sensor surface has been studied. After converting the modelled partial differential equations into ordinary differential equations by using similarity transformation, the system of equations is tackled with the aid of the shooting method. The influence of important parameters on the fluid motion and energy distribution is displayed graphically and analyzed in detail. The presented simulations depict that a significant rise in fluid velocity is noticed for an enhancement in the magnetic parameter while an opposite trend is observed for the temperature distribution. Moreover, the skin friction coefficient decreases as the squeezed flow index is increased.  相似文献   
49.
Robust excitation of a large spin ensemble is a long-standing problem in the field of quantum information science and engineering and presents a grand challenge in quantum control. A formal theoretical treatment of this task is to formulate it as an ensemble control problem defined on an infinite-dimensional space. In this paper, we present a distinct perspective to understand and control quantum ensemble systems. Instead of directly analyzing spin ensemble systems defined on a Hilbert space, we transform them to a space where the systems have reduced dimensions with distinctive network structures through the introduction of moment representations. In particular, we illustrate the idea of moment quantization for a spin ensemble and illuminate how this technique leads to a dynamically equivalent control system of moments. This equivalence enables the control of spin ensembles through the control of their moment systems, which in turn creates a new control analysis and design paradigm for quantum ensemble systems based on the use of truncated moment systems.  相似文献   
50.
This paper investigates PID control design for a class of planar nonlinear uncertain systems in the presence of actuator saturation. Based on the bounds on the growth rates of the nonlinear uncertain function in the system model, the system is placed in a linear differential inclusion. Each vertex system of the linear differential inclusion is a linear system subject to actuator saturation. By placing the saturated PID control into a convex hull formed by the PID controller and an auxiliary linear feedback law, we establish conditions under which an ellipsoid is contractively invariant and hence is an estimate of the domain of attraction of the equilibrium point of the closed-loop system. The equilibrium point corresponds to the desired set point for the system output. Thus, the location of the equilibrium point and the size of the domain of attraction determine, respectively, the set point that the output can achieve and the range of initial conditions from which this set point can be reached. Based on these conditions, the feasible set points can be determined and the design of the PID control law that stabilizes the nonlinear uncertain system at a feasible set point with a large domain of attraction can then be formulated and solved as a constrained optimization problem with constraints in the form of linear matrix inequalities (LMIs). Application of the proposed design to a magnetic suspension system illustrates the design process and the performance of the resulting PID control law.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号